Error estimates for higher-order finite volume schemes for convection-diffusion problems
نویسندگان
چکیده
It is still an open problem to prove a priori error estimates for finite volume schemes of higher order MUSCL type, including limiters, on unstructured meshes, which show some improvement compared to first order schemes. In this paper we use these higher order schemes for the discretization of convection dominated elliptic problems in a convex bounded domain Ω in IR2 and we can prove such kind of an a priori error estimate. In the part of the estimate, which refers to the discretization of the convective term, we gain h1/2. Although the original problem is linear, the numerical problem becomes nonlinear, due to MUSCL type reconstruction/limiter technique.
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملReduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations
The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (PDEs) by providing both approximate solution procedures and efficient error estimates. RB-methods have so far mainly been applied to finite element schemes for elliptic and parabolic problems. In the current study we extend the methodology to general ...
متن کاملReduced Basis Method for Finite Volume Approximations of Parametrized Linear Evolution Equations
The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (PDEs) by providing both approximate solution procedures and efficient error estimates. RB-methods have so far mainly been applied to finite element schemes for elliptic and parabolic problems. In the current study we extend the methodology to general ...
متن کاملOn Discontinuous Galerkin Methods for Nonlinear Convection-diffusion Problems and Compressible Flow
The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—fi...
متن کاملA unified approach to handle convection terms in Finite Volumes and Mimetic Discretization Methods for elliptic problems
Abstract We study the numerical approximation to the solution of the steady convection-diffusion equation. The diffusion term is discretized by using the Hybrid Mimetic Method (HMM), which is the unified formulation for the Hybrid Finite Volume Method, the Mixed Finite Volume Method and the Mimetic Finite Difference Method recently proposed in [33]. In such a setting, we discuss several techniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Num. Math.
دوره 26 شماره
صفحات -
تاریخ انتشار 2018